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Consideration is given to the dynamic problem of forecasting a frost on the soil surface, namely, of
establishing the fact and the moment of the water−ice and water vapor−ice phase transitions at the
soil−atmosphere interface, in calculating the evolution of the heat-moisture state of the viscous-buffer
layer of air and the near-surface layer of soil that are adjacent to this interface. The results obtained
can be used for prediction of ice formation on runways of airfields and on roads.

Reliable prediction of such critical events as soil frosts and glazed frost on roads and on runways of
airfields is an important problem in providing stable functioning of agricultural production and safe service of
motor-vehicle and aircraft transport. The available methods, algorithms, and mathematical models of forecast
of these events are empirical and represent regression relations, graphs, or charts obtained, as a rule, by statis-
tical processing of long-term meteorological observations [1–5]. They are correlated with the place to which
the forecast pertains; therefore their dissemination is diffucult, their accuracy is low, and the longer-term the
prediction, the lower the accuracy. At the same time, the need for universal high-accuracy algorithms of fore-
cast of the considered events with a probability of their occurrence no lower than 0.85 is dictated by practical
needs and, in particular, by the safety and regularity of passenger and freight motor- and air-transportation [3].

In the present work, prediction of ice formation on the surface of soil, a road, or a runway is formu-
lated as the problem of the evolution of the thermodynamic state of the viscous-buffer layer of air and the
near-surface layer of soil (a road, a runway) adjacent to the hyperplane of the soil−atmosphere interface and
of establishing the fact and the moment of water−ice or vapor−ice phase transitions on the indicated hyper-
plane in the course of this evolution. In this formulation, forecast of the events under consideration represents
an initial-boundary-value problem with free conditions at the internal boundary, which is incorrect [6] for
dynamic models of interaction in the system of soil−atmosphere.

Interaction between the Near-Ground Atmospheric Layer and a Rough Soil Surface. We will
define the viscous-buffer layer of the atmosphere in the neighborhood of the forecast point as an immobile,
on the average (in the statistical sense [7]), air sublayer of thickness z∗ −z∗ ∗  (z∗  and z∗∗  are the levels of the
dynamic local landscape and surface-soil roughnesses in the neighborhood of the forecast point) adjacent to
the soil surface, i.e., a layer in which u(z)

____
 = 0, z ∈  [z∗∗ , z∗ ], u

_
 is the average horizontal component of the

vector of the wind velocity. The level z∗  and the other dynamic characteristics of the turbulent shear flow of
air above the level z∗  (the scales of length L, velocity û∗ , temperature T

^
∗ , and moisture q̂∗  and the quantities

T(z∗ ) and q(z∗ )) are found by solution of the problem of the interaction of the turbulent boundary layer of the
atmosphere with the local landscape, agrolandscape, or homogeneous vegetation as the layer of permeable
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roughness with a known volume thickening (see, for instance, [8]). Evaluation of the dimensions of the
neighborhood of the forecast point is beyond the scope of the present article. Below for simplicity’s sake we
assume that the neighborhood of the forecast point is free of vegetation and has a plain landscape with a
small difference of heights.

The interaction of the near-ground atmospheric layer with a rough soil surface in the neighborhood of
the forecast point can be described by universal functions. Choosing as such the "perturbed logarithm" [9–
11], we have

u (z) = û∗ κ
−1 


ln 

z
z∗

 + ϕ1



 , T (z) = T (z∗ ) + T

^
∗ c1

−1 

ln 

z
z∗

 + ϕ2



 , q (z) = q (z∗ ) + q̂∗ c2

−1 

ln 

z
z∗

 + ϕ3



 ; (1)

ϕi = ∫ ξ−1 (1 − Φi (ξ)) dξ ,   i = 1, 2, 3 ; (2)

Φ1 = 











(1 − 15)−1 ⁄ 4 ,   ξ < 0 ,

1 + 4.7ξ ,   0 < ξ < 1 ,

5.7 ,   ξ ≥ 1 ;

(3)

Φ2 = 











0.7 (1 − 9ξ)−1 ⁄ 2 ,   ξ < 0 ,

1 + 4.7ξ ,   0 < ξ < 1 ,

5.44 ,   ξ ≥ 1 ;

(4)

Φ3 = 











Φ2 ,   ξ < − 0.5 ,

0.93 (1 − 9ξ)−1 ⁄ 2 ,   − 0.5 < ξ < 0 ,

Φ1 ,   0 < ξ ;

(5)

c1 = 3.375κ ,   κ = 0.4 ,   c2 = 2.69κ ,   ξ = 
z − z∗

L
 ,   L = − 

û∗
 3 T

κgT′w′
 ,

where T′w ′ is the vertical turbulent heat flux in the near-ground atmospheric layer. Another form of universal
functions can be found in [12].

Measuring the mean wind velocity and temperature and moisture of the air at the two levels z1 and
z2 in the near-ground atmospheric layer, choosing the functions Φ0i(ξ) = 1 − βξ, β ~   0.7, i = 1, 2, 3 as a zero
approximation, and then solving the inverse problem (1)–(5) by successive approximations, we can find the
entire set of characteristics of the turbulence in the near-ground layer of the atmosphere: z∗ , L, û∗ , T

^
∗ , q̂∗ ,

T(z∗ ), and q(z∗ ).
Heat-Moisture Transfer in the Viscous-Buffer Layer of the Near-Ground Air. By virtue of the

small thickness and the immobility, on the average, of the viscous-buffer layer of the near-ground air its
heat-moisture state can be written in a diffusion approximation that, however, accounts for the attenuating
turbulent transfer:

∂tX1 = ∂z (K (z) ∂zX1) + K13e
1 〈E∂zX1, ∂zX1〉 (6)
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(z ∈  [z∗∗ , z∗ ], 0 ≤ t0 ≤ t ≤ τ, τ is the forecast interval).
In (6), X1 = col (Tmed, ρ1), Tmed = Tmed(z, t), ρ1 = ρ1(z, t) is a vector whose coordinates are the air

temperature and the vapor density in the viscous-buffer layer; K(z) = CH(z) + K1 is the matrix of the heat and

moisture transfer coefficients; C = 



cTT

cqT
  
cTq

cqq




 is the matrix of the coefficients of turbulent heat and moisture

transfer attenuating in the layer [12],

ηT (z) = 0.44û∗ z 
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

z

BT
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

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
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 ,   BT = 

ν
û∗  √Pr

   ∑ 
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5

 ci (log Pr)i−1 ,

c1 = 34.96 ,   c2 = 28.79 ,   c3 = 33.95 ,   c4 = 6.3 ,   c5 = − 1.186 ,   Pr = 
νcp ρmed

λmed
   (~   0.7) .

Similarly,
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 ,
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kTν
cw λmed (Sc) (Pr)
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 ,
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
1
0



 ,   E = 
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0
0
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0



 ,

〈X, Y〉  is the scalar product of the vectors X and Y.
We will supplement system (6) with the following boundary and initial conditions:

z = z∗  :   Tmed (z, t) = T∗  (t) ,   ρ1 (z, t) = ρ1 (z∗ , t) = 
q∗  (t) p∗  (t)

RT∗  (t) (1 + 0.6q∗  (t))
 , (7)

p∗ (t), T∗ (t), and q∗ (t ) are the pressure, temperature, and specific moisture of the air at the level z = z∗  at the
instant t;

z = z∗∗  :   A1∂zX1 = B1 (X2
ε) ∂zX2

ε + e1 (1 − αs) Rδ (t) + e1Q (t) ≡ F1 (∂zX2z∗∗

ε  (t)) ; (8)

t = t0 :   X1 (z, t) = X1 (z, t0) = X10 (z) . (9)

In Eqs. (8) of the heat and moisture balances at the atmosphere−soil interface

A1 = (a1ij)i,j=1
2  ,   a111 = 

λmed (Pr)2

z∗∗
 ,   a112 = 0 ,   a121 = 

νρmed

z∗∗ Tmed (Sc)
 ,   a122 = 

χν
z∗∗  (Sc)

 ,

X2
 ε = col (Ts

 ε, wε) is a vector with the coordinates Ts
 ε = Ts(z, t, ε) and wε = w(z, t, ε),
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B1 (X2
ε) = (b1ij (X2

ε))i,j=1
2  ,   b111 = λs (w

ε, Ts
ε) ,   b112 = Ξ χDs (w

ε, Ts
ε) ,   b121 = 0 ,

b122 = (1 − Ξ) ρwks (w
ε, Ts

ε) ,   e1 = 

0
1



 ,   0 ≤ Ξ = H (w) − βH (wε − c (t)) ≤ 1 ,

β = 




∂tw
ε

∂tc





and for simplicity’s sake c(t) = ct [13, 14]. For Ξ = 0 phase transformations in the soil are absent and all the
moisture moves in liquid form. For Ξ = 1 only mass transfer of vapor occurs.

According to [15–17], the heat-moisture state of the soil massif is determined as the solution of the
initial-boundary-value problem

εA2 (X2
ε) ∂tX2

ε = ∂z [K2 (X2
ε, ε) ∂zX2

ε] + ∂z [e
1ks (〈e

1, EX2
ε〉)] ∂zp + γ 




e1 + 

χ
cp

 e1


 〈e1, E∂tX2

ε〉  , (10)

z = z∗∗  :   B1 (X2
ε) ∂zX2

ε = A1∂zX1 − e1 (1 − αs) Rδ (t) − e1Q (t) ≡ F2 (X1z∗∗
, t) , (11)

z = − h :   X2 (t, z, ε) = X2,−h
ε  (t) , (12)

t = t0 :   X2 (t, z, ε) = X20
ε  (z) , (13)

supplemented with an equation of state that relates the moisture content to the pressure and temperature for
a prescribed geometric structure of the pore space of the soil massif:

〈e1, EX2
ε〉  = f (Ts

ε, pε, ε) . (14)

In (10)–(13)

A2 (X2
ε) = (a2ij (X2

ε))i,j=1
2  ,   a211 = ρscs ,   a212 = 0 ,   a221 = 0 ,   a222 = ρw = 1 ,

K2 (X2
ε) = (k2ij (X2

ε))i,j=1
2  ,   k211 = λs (X2

ε) ,   k212 = 0 ,   k221 = ρwDs (X2
ε) δs (X2

ε, Ξ) ,

k222 = ρsDs (X2
ε) ,   γ = ερ1Ξ 

Now we will impose on the solutions of the initial boundary-value problem (6)–(14) continuity con-
ditions for the temperature and moisture distributions and conditions of finiteness of the discontinuities of
their gradients at the interface of the media by virtue of the dissimilar physical properties of air and soil:

Tmed (t, z∗∗  + 0) = Ts
ε (t, z∗∗  − 0) , (15)

[∂zT (t, z∗∗ )] = ∂zTmed (t, z∗∗  + 0) − ∂zTs
ε (t, z∗∗  − 0) ≠ ± ∞ ,

[∂zq (t, z∗∗ )] = ∂zq (t, z∗∗  + 0) − ∂zw
ε (t, z∗∗  − 0) ≠ ± ∞ .

(16)
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Let z∗ wg = min {z ∈  [−h, z∗ ∗ ]:z = zwg, Ξ ≠ 0} be the lower bound of the set of points zwg at which
the water−vapor phase transition occurs and z∗ gg be the upper bound of the same set. By t∗∗  ∈  [t0, τ] we
denote the moment at which one of the following conditions is fulfilled on the hyperplane z = z∗∗  for the
solution of system (6)–(14): 

a)  Ts
ε (z∗∗ , t∗∗ ) ≤ 0 ,   p1 (z∗∗ , t∗∗ ) ≥ psat , (17)

b)  Ts
ε > 0 ,   z∗∗  = z∗ wg ,   t = t∗∗  , (18)

c)  Ts
ε > 0 ,   z∗∗  = z∗ gg ,   t = t∗∗  , (19)

where p1(z∗ ∗ , t∗ ∗ ) is the partial vapor pressure at the soil−atmosphere interface z = z∗ ∗  and psat =

133.32⋅10

8.127Ts(z∗∗ ,t
∗ ∗ )+156

Ts(z∗∗ ,t
∗∗ )+236  is the Filnei formula of one-to-one correspondence between the partial pressure of

the saturated vapor and its temperature [18].
In the case of condition (17), from the Clausius−Clapeyron equation [5] it follows that on the soil

surface there is water in the solid phase, i.e., frost. In the case of condition (18) the soil layer [–h, z**] will
contain moisture in liquid form, while in the case of condition (19) moisture in liquid form is absent at the
soil−atmosphere interface.

Method of Solution of the Problem. We describe in brief a method for solving problem (6)–(14)
with free (unknown, determined by solution) conditions (12)–(13). A block diagram of the procedure is
shown in Fig. 1.

Fig. 1. Block diagram of the solution procedure.
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We represent the coefficients of transfer from the "lower system" (10) in the form ϕ(X)  =
ϕ0 + ϕ1(X); these coefficients depend nonlinearly on the running heat-moisture state of the soil massif. Isolat-
ing the linear components in the right-hand sides of Eqs. (6) and (10), we will construct the matrix Green
functions for the "upper" and "lower" initial-boundary-value problems formed by these components and con-
ditions (7)–(9) and (12)–(13): 

G(i) (z, ξ, t) = diag 










  ∑ 

n=1

∞

 ϕn
(i) (z) ϕn

(i) (ξ) exp (λr
(i) µn

(i)t)









r=1

2

 ,

mes Ω(i) = 




z∗  − z∗∗  ,   i = 1 ,

z∗∗  + h ,   i = 2 ,

where ϕn
(i)(z) = (mes Ω(i))−1⁄2√2  sin (δi2

π
2

 − µn
(i))z, z ∈  mes Ω(i), and µn

(i) are the roots of the equation

µ(i) tan (µ(i)) mes Ω(i) = 1 ;   λr
(i) = 











ν (Pr) ,   i = 1 ,

ν
Sc

 ,   i = 2 ,
   r = 1 ;

λr
(i) = 





λs0 ,   i = 1 ,
Ds0 ,   i = 2 ,

     r = 2

are the constant components of the heat and moisture transfer in the air and the soil and δi2 is the Kronecker
symbol.

Using the constructed matrix Green functions, we pass to the system of nonlinear integrodifferential
equations

Xε = V CC Ψ (L(1) (X
ε)) + Vz∗ ,−h Xz∗ ,−h

ε  + Vz∗∗ ,z∗∗
 F (L(2) (Xz∗∗

ε )) + CC0 X0
ε , (20)

which is equivalent to the original general initial-boundary-value problem.
In expression (20)

Xε = col (X1, X2
ε) ,   V CC ° = ∫ 

0

t

 




CC11

0
   

0
CC22




 ° dτ ;   

CCii °  =     ∫ 

mesΩ
(i)

   T(i)G(i) (z, ξ, t − τ) T(i)−1 ° dξ ;

T(i) are real orthogonal matrices that bring the matrices K1 (i = 1) and A2
−1K20 (i = 2) to the Jordan form

J1(K1) and J2(A2
−1K20), respectively, and Ψ is the superposition operator, ΨL1Xε = col (∂z(CH∂zX1) + K13e1

〈E∂zX1, ∂zX1〉), col (A2
−1[∂z(k21(X2

ε)∂zX2
ε) + j212e1〈e1,∂zX2

ε〉  + e1ks∂zp] +γ[e1 + 
χ
cp

 e1] 〈e1, E∂tX2
ε〉)), where j212 is the

upper right-hand element of the matrix J2(A2
−1K20);
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Vz∗ ,−h ° = ∫ 
t0

t

diag (J1 (K1) G
(1) (z, z∗ , t − τ) ,   J2 (A2

−1K20) G(2) (z, − h, t − τ)) ° dτ ;

Vz∗∗ ,z∗∗
 ° = ∫ 

t0

t

diag (J1 (K1) G(1) (z, z∗∗ , t − τ) ,   J2 (A2
−1K20) G(2) (z, z∗∗ , t − τ)) ° dτ ;

Xz∗ ,−h
ε (t) = col (X1(z∗ , t), X2

ε(−h, t)) is the vector of the temperature and moisture values at the external bounda-
ries of the problem z = z∗  and z = −h;

F (L(2) X2z∗∗

ε ) (t) = A1
−1 [B1 (X2

ε (z∗∗ , t)) ∂zX2
ε (z∗∗ , t) + e1 (1 − αs) Rδ (t) + e1Q (t)] ;

Xz∗∗
ε (t) is the vector of the temperature and moisture values at the internal boundary of the problem, i.e., on

the hyperplane of the soil−atmosphere interface, ℑ 0 o = V ℑ  ∆t,t0 o = ℑ V∆t,t0 o, ∆t,t0 = δ(t − t0)I is the matrix
δ-function, and X0(z) = X(z, t0) is the initial distribution of the temperatures and moisture in the above-ground
and underground layers of the system of soil−atmosphere.

We will differentiate system (20) with respect to z at the point z = z∗∗  and obtain four more equations
for the temperature and moisture gradients of the air and soil at the soil−atmosphere interface:

∂zX
ε = V CC ̂Ψ (L(1)X

ε) + V^
z∗ ,−h Xz∗ ,−h

ε  + V^
z∗∗ ,z∗∗

 F (L(2)Xz∗∗

ε ) + CC0 ̂X0
ε . (21)

In (21) the integral operators ℑ ^, V.,.
  ^, and ℑ 0

^ have the same structure as the integral operators ℑ , V.,., and ℑ 0

and are found from the latter by applying the operator ∂z to their kernels and then calculating the obtained
matrix functions at the point z = z∗ ∗ .

We introduce into our considerations the two orthoprojectors P = 



I2

0
  0
0



 and Q = I4 − P onto the

two-dimensional subspaces of the four-dimensional phase space of problem (6)–(14) that correspond to the
phase spaces of the "upper" and "lower" subsystems (6)–(9) and (10)–(14), respectively. Implementing the
conditions of continuous conjugation of the solutions of the "upper" and "lower" problems, we will apply the
operators P and Q to the right-hand sides of system (20) and then equate the obtained two-dimensional vector
functions at the point z = z∗∗ :

PXε (z∗∗ , t) = QXε (z∗∗ , t) . (22) 

The system of equations (20)–(22) allows complete determination of the heat-moisture state of the
near-ground layer of air and the near-surface layer of soil at the heights [−h, z*] in the time interval [t0, τ].

A numerical solution of system (20)–(22) is sought in the form of a series in the eigenvectors of
Green’s kernels G(i)(z, ξ, t) of the operators generated by this system, while a correspondence is set up be-
tween the system (20)–(22) itself and the infinite-dimensional (calculating) evolution system for the coeffi-
cients of the expansion of the solution into the indicated series.

To the evolution infinite-dimensional systems for the expansion coefficients the operations of discreti-
zation, linearization, and reduction to a finite-dimensional system are applied; the latter, in turn, becomes
regularized and its solution, being a finite-dimensional approximation to the solution of the initial system
(20)–(22), is found by a modified Newton method with control [8].

A special feature of the entire algorithm for forecasting the heat-moisture state of the soil−atmosphere
interface is continuous functioning in a cyclic mode up to the moment of the onset of the forecasted event or
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up to a certain instant tN, after which there is no need to forecast. The heat-moisture state of the viscous-buff-
er layer of air and the near-surface layer of soil is calculated continuously on the intervals [t0 + nω, τn], τn =
t0 + nω + τ, n = 0, 1, ..., ω is a certain period, prescribed in accordance with the demand of a forecast con-
sumer or of the developing weather conditions, for the arrival of new local meteorological information on the
state of the near-ground layer and information on the state of the system at the end of the preceding step. It
is obvious that with such organization of the forecast the probability of the prediction tends to unity as the
moment of onset of the event is approached.

An Application of the Results. The above approach and the theoretical considerations are imple-
mented, in particular, in a computer system, created by the Agrophysical Institute and intended for forecasting
ice formation on runways of airfields. The system has been set up and has been operating successfully for
more than two years at Pulkovo airport, St. Petersburg. According to the requirements of safety and reliable
service of runways, in developing the system it has been assumed that: 15 min ≤ τ ≤ 3 h, the probability of
reliable prediction must be no lower than 0.85, the period of cyclic functioning of the system is chosen to be
the maximum possible, ω = 15 min, meteorological measurements on a meteorological mast in the near-
ground layer of air near the runway are carried out on the levels z1 = 0.5 m and z2 = 4 m above the runway
surface.

Figure 2a shows a vertical temperature profile in the runway body and in an air layer adjacent to it,
while Fig. 2b and c provides the time dependence of the mean-integral air temperatures and saturation in a

Fig. 2. Dynamics of the interaction of a runway and the atmosphere: a)
temperature distribution (oC) over the height (m) of the system of run-
way−viscous-buffer atmospheric layer for 09.01.1994 [1) at 12 h 30 min;
2) at 15 h 05 min]; b, c) time dependence of the air temperature Tmed and
the saturation temperature Tsat (

oC) in the viscous-buffer atmospheric layer
above the runway for the cases of ice formation (b) and its absence (c).
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viscous-buffer layer at the runway surface in operation of the system for cases of occurrence and absence of
ice formation.

NOTATION

z, vertical coordinate; t, time; u(z), T(z), and q(z), vertical distributions of the mean velocity, tempera-
ture, and specific humidity of the air in the near-ground atmospheric layer; L, û∗ , T

^
∗ , and q̂∗ , characteristic

scales of length, velocity, temperature, and moisture in the turbulent sublayer of the near-ground atmospheric

layer; (&′), centered pulsation of the quantity (&); (($)′(&)′), correlation of pulsations of the quantities ($) and
(&); Pr, molecular Prandtl number; v, ρmed, λmed, and Tmed, kinematic viscosity, density, thermal conductivity,

and temperature of the air in the viscous-buffer layer; ρ1 and p1, density and partial pressure of the vapor in
the viscous-buffer layer; Sc, Schmidt number; D10, coefficient of molecular diffusion in moist air; cp1

, cp, and

cw, heat capacities of the vapor and the air at constant pressure and heat capacity of the water; 
KT

cw
, specific

external heat of vaporization; ∂t and ∂z, operators of time and space differentiation; R, gas constant of the air;

(&)∗ , value of the quantity (&) at the level z = z∗ ; (&)∗ ∗ , value of the quantity (&) at the level z = z∗∗ ; χ,

specific heat of vaporization; αs, albedo of the soil surface; Rδ, radiative balance on the soil surface; Q, in-

tensity of the atmospheric precipitation; Ts
 ε and wε, temperature of the soil and moisture content in it; ρs, λs,

Ds, and ks, averaged density of the soil and its coefficients of thermal conductivity, moisture conductivity, and

filtration; Ξ, criterion of the phase transitions in the soil massif; H(∗ ), Heaviside function; c, evaporation rate

in the soil massif; cs and pε, heat capacity and generalized water potential of the soil; δs, coefficient of ther-
mogradient transfer of moisture in the soil; col (&1, &2, ..., &n), vector with the coordinates &i, i = 1, 2, ...,

n; mes Ω, measure of the set Ω; J(�), Jordan form of the matrix �; �−1, inverse matrix; I, unit matrix; V o,

transform of the operator V ((o), inverse transform of the operator V). Subscripts: med, medium; sat, satura-
tion; w, water; g, gas; s, soil.
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